1,231 research outputs found

    Shared Authority Concerns in Automated Driving Applications

    Get PDF
    Given the move toward driverless cars, which includes the more short-term goal of driving assistance, what the appropriate shared authority and interaction paradigms should be between human drivers and the automation remains an open question until more principled research and testing has occurred. It is unclear at this time how robust driverless cars are to system failures (including human failures) and operations in degraded sensor environments. Automation onboard such vehicles is inherently brittle and can only account for what it is programmed to consider. Communication between what is technically a very complex system to a human population of extreme variability in driving skills and attention management will be difficult, since the driver will need to be appropriately informed of the state of the system, including limitations, and will need to build appropriate trust in the automation’s capabilities (neither too much or too little). Further complicating this problem is the significant body of research demonstrating that automated systems can lead to boredom, which encourages distraction. This leaves operators unaware of the state of the vehicle (aka, mode confusion) and ill-suited to respond quickly and appropriately in case of a potential accident. Over time, operator skill degradation due to automation use can further reduce the human ability to respond to emergent driving demands, and will likely lead to risk homeostasis even in normal operations. Each of these issues are well-known to the human systems engineering community, but it is unclear that these issues are being considered by driverless car designers or that manufactures are conducting human-in-the-loop tests with representative members of the driving population. Until these tests show that the vehicles account for the aforementioned issues, driverless cars will not be safe for unrestricted access and use on U.S. roadways. Moreover, there are significant socio-technical considerations that do not appear to be a concern in the push to introduce this technology on a wide scale. The utilitarian approach quoted by many in the press, i.e., that driverless cars will eventually kill people but that this should be acceptable due to the likely reduction in overall deaths (which is not yet proven) demonstrates an insensitivity to a deontological perspective that causes many people to be uncomfortable with such a significant shift in responsibility and accountability to computers

    Convective Vortices on Mars: A Reanalysis of Viking Lander 2 Meteorological Data, Sols 1-50

    Get PDF
    On 7th August 1976 the Viking 2 lander touched down at Utopia Planitia, Mars. We have reanalysed Viking lander 2 meteorological data, and it is the object of this research to give not only annual but diurnal statistics of convective vortex formation for the Viking 2 landing site

    The effect of culture preservation techniques on patulin and citrinin production by Penicillium expansum Link

    Get PDF
    Aims: To study the influence of culture preservation methods and culture conditions on the production of the mycotoxins patulin and citrinin by Penicillium expansum. Methods and results: Ten strains of Penicillium expansum were preserved using subculture and maintenance at 4 ÂșC, mineral oil, drying on silica gel and freeze-drying. Patulin and citrinin production was assessed on yeast extract sucrose agar (YES) and grape juice agar (GJ), using TLC before and after 0.5, 2–3, 6 and 12 months preservation. Citrinin was detected in all cultures for all preservation techniques on YES. The patulin profiles obtained differed with strain and culture media used. Conclusions: Citrinin production seems to be a stable character for the tested strains. There is a tendency for patulin detection with time apparently more consistent for silica gel storage and freeze-drying, especially when the strains are grown on GJ. Significance and Impact of the Study: Variability in the profiles of the mycotoxins tested seems to be more strain-specific than dependent on the preservation technique used

    Investment in Electricity Networks with Transmission Switching

    Get PDF
    We consider the application of Dantzig-Wolfe decomposition to stochastic integer programming problems arising in the capacity planning of electricity trans-mission networks that have some switchable transmission elements. The decomposition enables a column-generation algorithm to be applied, which allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm the efficiency of the approach

    The Origin of Galactic Cosmic Rays

    Get PDF
    Motivated by recent measurements of the major components of the cosmic radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a model in which there are two distinct kinds of cosmic ray accelerators in the galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per nucleon suggests that these two elements do not have the same spectrum of magnetic rigidity over this entire region and that these two dominant elements therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures, uuencode

    The effects of an experimental programme to support students’ autonomy on the overt behaviours of physical education teachers

    Get PDF
    Although the benefits of autonomy supportive behaviours are now well established in the literature, very few studies have attempted to train teachers to offer a greater autonomy support to their students. In fact, none of these studies has been carried out in physical education (PE). The purpose of this study is to test the effects of an autonomy-supportive training on overt behaviours of teaching among PE teachers. The experimental group included two PE teachers who were first educated on the benefits of an autonomy supportive style and then followed an individualised guidance programme during the 8 lessons of a teaching cycle. Their behaviours were observed and rated along 3 categories (i.e., autonomy supportive, neutral and controlling) and were subsequently compared to those of three teachers who formed the control condition. The results showed that teachers in the experimental group used more autonomy supportive and neutral behaviours than those in the control group, but no difference emerged in relation to controlling behaviours. We discuss the implications for schools of our findings

    A coordination model for interactive components

    Get PDF
    Although presented with a variety of ‘flavours’, the notion of an interactor, as an abstract characterisation of an interactive com- ponent, is well-known in the area of formal modelling techniques for interactive systems. This paper replaces traditional, hierarchical, ‘tree-like’ composition of interactors in the specification of complex interactive sys- tems, by their exogenous coordination through general-purpose software connectors which assure the flow of data and the meet of synchronisation constraints. The paper’s technical contribution is twofold. First a modal logic is defined to express behavioural properties of both interactors and connectors. The logic is new in the sense that its modalities are indexed by fragments of sets of actions to cater for action co-occurrence. Then, this logic is used in the specification of both interactors and coordination layers which orchestrate their interconnection

    Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery

    Get PDF
    Fine-scale, subseasonal fluctuations in Arctic-Boreal surface water reflect regional water balance and modulate trace gas emissions to the atmosphere but have eluded detection using traditional satellite remote sensing. We use high-resolution (~3–5 m), high-frequency CubeSat sensors to measure near-daily changes in lake surface area through an object-based tracking method that incorporates machine learning to overcome notable limitations of CubeSat imagery. From ~76,000 images we obtain >2.2 million individual observations of changing surface areas for 85,358 lakes in Northern Canada and Alaska between 1 May and 1 October 2017. We find broad-scale lake area declines across diverse climatic, hydrologic, and physiographic terrains. Localized exceptions reveal lowland flooding and aquatic vegetation phenology cycles. Cumulative small shoreline changes of abundant lakes on the Canadian Shield exceed total inundation variations of better-studied lowland environments, revealing a surprisingly dynamic landscape with respect to subseasonal variations in surface water extent and trace gas emissions

    Global Characterization of Inland Water Reservoirs Using ICESat-2 Altimetry and Climate Reanalysis

    Get PDF
    Accurate, transparent knowledge of global reservoir levels is a prerequisite for effective management of water resources. However, no complete database exists because gauge data are not globally available and the current generation of satellite radar altimeters resolves only the world's largest reservoirs. Here, we investigate water level changes in global reservoirs using ICESat-2, National Aeronautics and Space Administration (NASA)'s new satellite laser altimetry mission. In just the first 12 months of the mission, we find that ICESat-2 accurately (±14.1 cm) retrieved water level changes for 3,712 global reservoirs having surface areas ranging from <1 to >10,000 km2. From this new global data set, we identify distinct regional patterns in reservoir level change that can be attributed to both water availability and management strategy. Our findings demonstrate that ICESat-2 will form a crucial component of any global reservoir level inventory and enable new insight into how reservoir management responds to climatic variability and increasing human demand
    • 

    corecore